INL Feedstock Workshop – August 2011

Size Reduction with Selective Material Orientation

forestconcepts[™]

Jim Dooley

This presentation is based upon research and development that was supported in-part by the U.S. Department of Energy Office of Biomass Programs Small Business Innovation Research Program Contract No. DE-SC-0002291.

Agenda

- Design Objectives and Constraints
- Taking Advantage of Natural Modes of Failure
- The Forest Concepts Comminution process
- Final Thoughts

Objectives and Constraints

- Maximize transport and storage density

 Convert logs to industrial veneer
- Ensure flowability similar to grains
 Produce uniform sheared cubic particles
- Minimize comminution energy
 - Cutting parallel to grain minimizes energy
 Single-pass shearing minimizes frictional heat
- Produce particles optimized for conversion

Natural Modes of Failure

- Fibrous biological materials can fail in seven unique ways
 - Compression, brittle, shear,...
- Plants are very weak perpendicular to grain

forestconcepts

Pathways to Precision Particles

Why Industrial Veneer ?

- High transport density
- Controls thickness dimension
- Enables separation of heartwood, sapwood and bark
- Enables orientation with grain for next processing operation

Veneer Making Video

forestconcepts[™]

Rotary Shear WoodMuncherTM

- Low energy comminution method
- Orient parallel to grain or cross-grain

forestconcepts"

Does Length Matter?

Longer particles take less energy to make

forestconcepts[™]

WoodMuncher[™] Video

forestconcepts"

Final Thoughts

- Work with natural modes of failure
- Veneer offers high density transport
- Single pass shearing minimizes energy
- Resulting particles have high surface area, high uniformity, high yield
- Crumbles[™] particles are flowable
- Same design principles probably work in herbaceous crops

This presentation is based upon research and development that was supported in-part by the U.S. Department of Energy Office of Biomass Programs Small Business Innovation Research Program Contract No. DE-SC-0002291.

Thank You

Jim Dooley Forest Concepts 3320 West Valley Hwy. N. D110 Auburn, WA 98001

p.253.333.9663 / jdooley@forestconcepts.com / www.forestconcepts.com

forestconcepts[™]